
Prolog Committee Draft standard ISO/IEC JTC1 SC22 WG17 N110 - Editor’s foreword

Programming language Prolog — Draft standard – Editor’s foreword

1 Introduction

The standard for Prolog will appear in two parts. This

is a draft for part 1 and covers the core aspects of the

language. Part 2 will contain a definition of modules.

Several expert members of WG17 have contributed signif-

icantly to this draft. In alphabetical order, they are:

a) David Bowen (Quintus Corporation) – Input/output,

errors,

b) Mats Carlsson (SICS) – Syntax,

c) Klaus Daessler (Siemens) – Terminology, executing

a goal,

d) Pierre Deransart (INRIA), AbdelAli Ed-Dbali (Uni-

versité d’Orléans) – Formal semantics (Annex A),

e) Tony Dodd (University of Bristol) – bagof/3 and

setof/3,

A Working Draft (SC22 N1133) was balloted and ac-

cepted for CD registration (SC22 N1205, N1210, N1242:

resolution 226). The official (and unofficial) comments

accompanying the ballot results were considered at a

WG17 meeting in Copenhagen, and appropriate changes

have been made. A response from WG17 to all the

comments is in preparation and will follow shortly.

This revised CD is the result, and is put forward for

registration as a DIS.

This foreword is not part of the draft International Standard.

Roger Scowen

ISO/IEC JTC1 SC22 WG17 (Prolog) convener,

DITC/93, National Physical Laboratory

TEDDINGTON, Middlesex TW11 0LW

UNITED KINGDOM

April 7, 1993

2 A brief rationale

This draft International Standard for Prolog is based on

“Edinburgh” Prolog – a de facto standard. Like many such

standards, its definition is incomplete and implementations

differ in many surprising ways. Thus for many Prolog

programmers a standard will tell them not just what they

already know, but also provide answers to questions they

have not yet asked.

Many implementors seek to provide in a Prolog predicate

the ability to perform all possible tasks concerned with

that functionality in a single call. For a programmer,

this generality may be convenient. But for a standardizer

it is a nightmare trying to define the precise effect of

erroneous cases. This draft International Standard therefore

normally aims to provide any particular functionality in

the simplest possible way, but with sufficient power to

provide portability to those who need it.

WG17 is aware that every time an International Standard

defines a feature as implementation dependent, the stan-

dardizers have failed to provide portable functionality. The

number of such features has therefore been minimized.

3 Features of draft standard Prolog

Many parts of the draft are both close to existing practice

and implementable efficiently. For example:

— Syntax (6) is close to traditional Edinburgh Prolog

syntax, specifies which terms are equivalent, identifies

ambiguous cases and defines their meaning.

— Unification (7.3, 8.2) resolves the problem of the

occurs-check. This is not normally implemented, but the

failure to do so leaves Prolog with an unclear, ambiguous

semantics where steadfast libraries are impossible (see

the example 7.3.4.1).

— Arithmetic (7.9, 8.6, 8.7, 10.1) is based on a

language-independent arithmetic standard designed by

experts, can be implemented efficiently on almost any

computer processor, and is accurate so that programmers

know their answers can be trusted.

— Execution of a goal (7.7, 7.8).

Other features are uncontroversial and agreed, for example:

type-testing (7.1, 8.3), term comparison (7.2, 8.4), clause

retrieval (8.8), clause creation (8.9), more complicated

evaluable functors (10.2-10.4).

A few features are novel, but have been accepted and are

stable, for example: flags (7.11, 8.17), error processing

(7.12), atom processing (8.16), converting characters read

as data (8.14).

1


